Genetic diversity of clinical and environmental isolates of Vibrio cholerae determined by amplified fragment length polymorphism fingerprinting.
نویسندگان
چکیده
Vibrio cholerae, the causative agent of major epidemics of diarrheal disease in Bangladesh, South America, Southeastern Asia, and Africa, was isolated from clinical samples and from aquatic environments during and between epidemics over the past 20 years. To determine the evolutionary relationships and molecular diversity of these strains, in order to understand sources, origin, and epidemiology, a novel DNA fingerprinting technique, amplified fragment length polymorphism (AFLP), was employed. Two sets of restriction enzyme-primer combinations were tested for fingerprinting of V. cholerae serogroup O1, O139, and non-O1, O139 isolates. Amplification of HindIII- and TaqI-digested genomic DNA produced 30 to 50 bands for each strain. However, this combination, although capable of separating environmental isolates of O1 and non-O1 strains, was unable to distinguish between O1 and O139 clinical strains. This result confirmed that clinical O1 and O139 strains are genetically closely related. On the other hand, AFLP analyses of restriction enzyme ApaI- and TaqI-digested genomic DNA yielded 20 to 30 bands for each strain, but were able to separate O1 from O139 strains. Of the 74 strains examined with the latter combination, 26 serogroup O1 strains showed identical banding patterns and were represented by the O1 El Tor strain of the seventh pandemic. A second group, represented by O139 Bengal, included 12 strains of O139 clinical isolates, with 7 from Thailand, 3 from Bangladesh, and 2 from India. Interestingly, an O1 clinical isolate from Africa also grouped with the O139 clinical isolates. Eight clinical O1 isolates from Mexico grouped separately from the O1 El Tor of the seventh pandemic, suggesting an independent origin of these isolates. Identical fingerprints were observed between an O1 environmental isolate from a river in Chile and an O1 clinical strain from Kenya, both isolated more than 10 years apart. Both strains were distinct from the O1 seventh pandemic strain. Two O139 clinical isolates from Africa clustered with environmental non-O1 isolates, independent of other O139 strains included in the study. These results suggest that although a single clone of pathogenic V. cholerae appears responsible for many cases of cholera in Asia, Africa, and Latin America during the seventh pandemic, other cases of clinical cholera were caused by toxigenic V. cholerae strains that appear to have been derived locally from environmental O1 or non-O1 strains.
منابع مشابه
Genetic diversity of Vibrio cholerae in Chesapeake Bay determined by amplified fragment length polymorphism fingerprinting.
Vibrio cholerae is indigenous to the aquatic environment, and serotype non-O1 strains are readily isolated from coastal waters. However, in comparison with intensive studies of the O1 group, relatively little effort has been made to analyze the population structure and molecular evolution of non-O1 V. cholerae. In this study, high-resolution genomic DNA fingerprinting, amplified fragment length...
متن کاملComparison of Genetic Diversity in Species and Cultivars of Pistachio (Pistacia sp. L.) Based on Amplified Fragment Length Polymorphism (AFLP) Markers
The genetic diversity of a large number of pistachio genotypes grown in Iran is not exactly known. Most of the studies on genetic diversity of Iranian pistachio varieties are based on morphological characteristics or isozyme markers. In the present study, the genetic diversity of selected pistachio cultivars along with some wild species were evaluated by Amplified Fragment Length Polymorphism (...
متن کاملMolecular characterization of Vibrio cholerae O1 and non-O1 from human and environmental sources in Malaysia.
A total of 31 strains of Vibrio cholerae O1 (10 from outbreak cases and 7 from surface water) and non-O1 (4 from clinical and 10 from surface water sources) isolated between 1993 and 1997 were examined with respect to presence of cholera enterotoxin (CT) gene by PCR-based assays, resistance to antibiotics, plasmid profiles and random amplified polymorphic DNA (RAPD) analysis. All were resistant...
متن کاملGenetic Heterogeneity among Leishmania major Isolates in Iran Determined by Restriction Fragment Length Polymorphism (RFLP) and Multilocus Microsatellite Typing (MLMT)
Background & Aims: In recent years, molecular methods for characterizing genetic heterogeneity have found a major place in modern approaches. In this study, two different molecular techniques including Restriction Fragment Length Polymorphism (RFLP) and Multi Locus microsatellite typing (MLMT) were carried out in order to evaluate genetic heterogeneity among isolates of Leishmania major in Iran...
متن کاملComparison of Distribution of Virulence Determinants in Clinical and Environmental Isolates of Vibrio cholera
Background: The virulence of a pathogenic Vibrio cholerae is dependent on a discrete set of genetic determinants. In this study, we determined the distribution of virulence determinants among the clinical and environmental isolates of V. cholerae. Methods: The antibiotic resistance profiles of the isolates were determined using standard disk diffusion assay. PCR assay was performed to analyze t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 66 1 شماره
صفحات -
تاریخ انتشار 2000